A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2

نویسندگان

  • Larry W. Horowitz
  • Stacy Walters
  • Denise L. Mauzerall
  • Louisa K. Emmons
  • Philip J. Rasch
  • Claire Granier
  • Xuexi Tie
  • Jean-François Lamarque
  • Martin G. Schultz
  • Geoffrey S. Tyndall
  • John J. Orlando
  • Guy P. Brasseur
چکیده

[1] We have developed a global three-dimensional chemical transport model called Model of Ozone and Related Chemical Tracers (MOZART), version 2. This model, which will be made available to the community, is built on the framework of the National Center for Atmospheric Research (NCAR) Model of Atmospheric Transport and Chemistry (MATCH) and can easily be driven with various meteorological inputs and model resolutions. In this work, we describe the standard configuration of the model, in which the model is driven by meteorological inputs every 3 hours from the middle atmosphere version of the NCAR Community Climate Model (MACCM3) and uses a 20-min time step and a horizontal resolution of 2.8 latitude 2.8 longitude with 34 vertical levels extending up to approximately 40 km. The model includes a detailed chemistry scheme for tropospheric ozone, nitrogen oxides, and hydrocarbon chemistry, with 63 chemical species. Tracer advection is performed using a flux-form semi-Lagrangian scheme with a pressure fixer. Subgrid-scale convective and boundary layer parameterizations are included in the model. Surface emissions include sources from fossil fuel combustion, biofuel and biomass burning, biogenic and soil emissions, and oceanic emissions. Parameterizations of dry and wet deposition are included. Stratospheric concentrations of several long-lived species (including ozone) are constrained by relaxation toward climatological values. The distribution of tropospheric ozone is well simulated in the model, including seasonality and horizontal and vertical gradients. However, the model tends to overestimate ozone near the tropopause at high northern latitudes. Concentrations of nitrogen oxides (NOx) and nitric acid (HNO3) agree well with observed values, but peroxyacetylnitrate (PAN) is overestimated by the model in the upper troposphere at several locations. Carbon monoxide (CO) is simulated well at most locations, but the seasonal cycle is underestimated at some sites in the Northern Hemisphere. We find that in situ photochemical production and loss dominate the tropospheric ozone budget, over input from the stratosphere and dry deposition. Approximately 75% of the tropospheric production and loss of ozone occurs within the tropics, with large net production in the tropical upper troposphere. Tropospheric production and loss of ozone are three to four times greater in the northern extratropics than the southern extratropics. The global sources of CO consist of photochemical production (55%) and direct emissions (45%). The tropics dominate the chemistry of CO, accounting for about 75% of the tropospheric production and loss. The global budgets of tropospheric ozone and CO are generally consistent with the range found in recent studies. The lifetime of methane (9.5 years) and methylchloroform (5.7 years) versus oxidation by tropospheric hydroxyl radical (OH), two useful measures of the global abundance of OH, agree well with recent estimates. Concentrations of nonmethane hydrocarbons and oxygenated intermediates (carbonyls and peroxides) generally agree

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tropospheric chemistry in the integrated forecasting system of ECMWF

A representation of atmospheric chemistry has been included in the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The new chemistry modules complement the aerosol modules of the IFS for atmospheric composition, which is named C-IFS. C-IFS for chemistry supersedes a coupled system in which chemical transport model (CTM) Model for OZone and ...

متن کامل

Impact of Mexico City emissions on regional air quality from MOZART-4 simulations

An extensive set of measurements was made in and around Mexico City as part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) experiments in March 2006. Simulations with the Model for Ozone and Related Chemical Tracers, version 4 (MOZART4), a global chemical transport model, have been used to provide a regional context for these observations and assist in their interp...

متن کامل

Seasonal stratospheric intrusion of ozone in the upper troposphere over India

The Model for Ozone and Related chemical Tracers-2 (MOZART-2) is used to examine the evolution of pollutant O3 in the upper troposphere over the Indian region. Vertical profiles of ozone mixing ratio retrieved from Microwave Limb Sounder (MLS) aboard Earth Observing System (EOS) AURA satellite for the period 2005–2009 and Tropospheric Emission Spectrometer (TES) aboard (EOS) AURA for the period...

متن کامل

Attribution of projected changes in U.S. ozone and PM2.5 concentrations to global changes

The impact that changes in future climate, anthropogenic U.S. emissions, background tropospheric composition, and land-use have on regional U.S. ozone and PM2.5 concentrations is examined through a matrix of downscaled regional air quality simulations using the Community Multi-scale Air Quality (CMAQ) model. Projected regional scale changes in meteorology due to climate change under the Intergo...

متن کامل

Spatial variability of summertime tropospheric ozone over the continental United States: Implications of an evaluation of the CMAQ model

This study evaluates the ability of the Community Multiscale Air Quality (CMAQ) model to simulate the spatial variability of summertime ozone (O3) at the surface and in the free troposphere over the continental United States. Simulated surface O3 concentrations are compared with 987 Air Quality System (AQS) sites and 123 Clean Air Status and Trends Network (CASTNet) sites. CMAQ’s ability to rep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003